May-Jun 1985 Proton and Carbon-13 Nuclear Magnetic Resonance Spectroscopy and Conformational Aspects of 5,6,7,8-Tetrahydro-4-chromanone Derivatives

René Dolmazon and Suzanne Gelin*

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées, 20, Avenue Albert Einstein, F-69621 Villeurbanne Cedex, France Received October 30, 1984

The 25 MHz ¹³C and 350 MHz ¹H-nmr spectra of the title compounds are reported. Conformational equilibria in variously substituted 5,6,7,8-tetrahydrochromanones are discussed. Compounds bearing a *t*-butyl group at the 6 position appear to be conformationally homogenous.

J. Heterocyclic Chem., 22, 793 (1985).

Recently, we described the synthesis of 5,6,7,8-tetrahydrochromanone derivatives **la-e,h**, as precursors of l-oxa-4-decalones [1,2]. The lack of ¹³C-nmr data of this class of compounds prompted us to determine the values of these data in order to investigate their conformational properties in combination with 350 MHz ¹H-nmr studies. Additional isomeric 6-t-butyl-2-methyl derivatives **lf,g** were prepared by acylation of 4-t-butyl-1-morpholino-1-cyclohexene with crotonoyl chloride.

R¹ R2 R³ R4 Н Н b Me Н Н Н Me Me Η Н c d trans Me Н Me Н Н Н Me Me e cis f cis Me н н t-Bu Me Н Н t-Bu g trans Мe Me н t-Bu

Table 2

Methyl substituent effects [a] at C-2,C-3 and C-4

Compound	Substituent	C-2	C-3	C-4
1b	2-methyl	7.2	6.8	0.7
lc	2,2-dimethyl	12	11.3	0.4
ld	trans-2,3-dimethyl	12.1	8.6	2.2
le	cis-2,3-dimethyl	9.4	7.7	5.2
1f	cis-2-methyl	7.2	6.7	0.3
lg	trans-2-methyl	6.9	6.5	-0.1
1h	2,2-dimethyl	11.9	11.0	0.2

[a] In ppm; positive values indicate downfield shifts. All shifts are related to values in the parent compound 1a.

The carbon shifts are listed in Table 1 and were assigned on the basis of ¹³C-nmr off-resonance decoupled spectra, general chemical shift arguments and comparison of the ring carbon shifts with chromanones [3,4], 2-methyl-2,3-dihydropyran-4-one [5] and substituent effects in substituted 3,4-dihydro-2*H*-pyrans [6]. In the case of the 2,6-disubstituted derivatives, the formation of a mixture of cis/trans isomers is clearly revealed, since the ¹³C-nmr spectrum of the crude material give rise to two resonances for all the carbon atoms in a 7:3 ratio. The problem re-

Table 1

Carbon Chemical Shifts of Tetrahydrochromanones 1 (δ ppm, Deuteriochloroform)

No.								
Compound	C-2	C-3	C-4	C-4a	C-8a	CH ₃	t-Bu	Other C [a]
la	67.2	36.3	191.5	112.6	171.4			20.8, 22.0, 22.1, 28.6
1b	74.4	43.1	192.2	111.8	171.2	20.6		20.6, 21.9, 22.0, 28.6
1c	79.2	47.6	191.9	110.2	168.8	26.3		20.4, 22.1, 22.2, 29.1
1d trans	79.3	44.9	193.7	110.8	170.1	19.4 (C-2)		20.9, 21.9, 22.0, 28.6
						10.5 (C-3)		
le cis [b]	76.6	44.0	196.7	110.0	170.3	16.2 (C-2)		20.8, 21.9, 22.1, 28.5
						9.5 (C-3)		, , ,
1f cis	74.4	43.0	191.8	111.5	170.9	20.7	32.1, 27.3	43.7 (C-6), 29.7, 23.2, 22.2
lg trans [c]	74.1	42.8	191.4	110.9	170.3	20.3	32.1, 27.3	43.9 (C-6), 29.7, 23.4, 21.7
lh .	79.1	47.3	191.7	109.8	168.6	27.7	32.2, 27.3	43.9 (C-6), 30.2, 23.3, 21.8
						24.8	•	, , , , , , , , , , , , , , , , , , , ,

mains of deciding which belong to cis and which to trans isomer. A choice cannot be made between them based upon ¹³C shifts or 350 MHz ¹H-nmr. The major compound **1f** was obtained in a pure state by recrystallization. Therefore the crystal structure of **1f** was determined by an X-ray diffraction experiment. Unambiguous evidence to support the cis configuration was obtained [7]. In Table 2 are gathered data on the effects of methylation calculated from the chemical shifts in Table 1. A comparison of the heterocyclic ring carbons with chromanones [3,4] reveals that the C-2, C-3 and C-4 carbons were not significantly affected by the replacement of a phenyl by a cyclohexenyl moiety.

In order to obtain additional information about the conformation of compounds 1, the coupling constant data were determined through 350 MHz ¹H-nmr analysis, by spin decoupling experiments (Table 3). It is reasonable to accept that the heterocyclic ring adopts a conformation with the ether-oxygen and four carbon atoms in one plane, only C-2 lying outside this plane, by analogy to chromanones and flavanones [8,9]. Moreover, it is well known that the half-chair conformation of the cyclohexene ring corresponds to an energy minimal [10]. The 'H-nmr spectra of la and lc showed magnetic equivalence of the H-3 and H-3' protons and of H-2 and H-2' (la) or of the geminal 2-methyl groups (1c). These findings are consistent with the heterocyclic ring in rapid conformational equilibrium. By fixing the conformation of the cyclohexene ring by means of t-butyl group at the 6 position (1h compared to 1c), the nonequivalence of the H-3 and H-3' protons and of the 2,2-methyl groups revealed a rigid conformation of the dihydropyran ring. Additional evidence comes from the ¹³C-nmr spectrum of **1h** which displayed two different methyl carbons. The remaining question, more difficult to answer, concerns the conformation of this molecule for which two possibilities exist: the C-2 and C-7 carbons could be either on the same side of the plane formed by C-4, C-5, C-8, C-4a and C-8a (A) or on the opposite side (B) (Scheme 1).

Scheme 1. Possible conformations of 1h.

Interestingly, the 350 MHz ¹H nmr spectra of the isomeric 6-t-butyl-2-methyl derivatives **1f** and **1g** indicated that the 2-methyl groups are pseudoequatorially disposed in each isomer, since the 2-methine protons exhibited both axial-axial and axial-equatorial vicinal coupling constants (Table 3). Consequently, **1f** and **1g** exist in a fixed conformation **B** and **A** respectively (Scheme 2).

Scheme 2. cis and trans 6-t-Butyl-2-methyl-5,6,7,8-tetrahydro-4-chromanones.

It can be seen from the Table 1 that the ¹³C chemical shifts of **1f** and **1g** are nearly identical, although all reson-

Table 3

Selected Chemical Shifts and 'H Coupling Constants for Compounds 1

Compound		δ ppm, deut	J (Hz)			
	H-2	Н-3	CH ₃ (C-2)	CH ₃ (C-3)	JH-2-H-3	J H-3-H-3'
la	4.39	2.44			7	
1b	4.44	2.44	1.40		12.3	16.8
		2.37			4.5	
lc		2.37	1.37			
ld trans	4.01	nl	1.41	1.06	12.5	
le cis [a]	4.45	nl	1.30	1.00	3.3	
1f cis	4.42	2.45	1.41		13.3	16.8
		2.34			3.8	
lg trans [b]	4.49	nl	1.40		11.9	
-8 [-]					4.5	
lh		2.56	1.41			16.5
		2.39	1.35			

ances of the trans isomer are slightly upfield (0.2-0.6 ppm) as compared to those of the major cis isomer. The less favorable geometry of the trans isomer which differs from the cis by a greater interaction between the O-C₂ and C-7,C-8 bonds could explain these small differences. The conformational diagnosis of 1h, by comparing its carbon chemical shifts with those of 1g and 1f is not conclusive; however, upon geometrical argument, conformation B would seem to be preferable [11].

For the compound 1b, the vicinal coupling constants $J_{H\cdot2.H\cdot3}$ and $J_{H\cdot2.H\cdot3'}$ of 12.3 and 4.5 Hz suggest that the heterocyclic ring mostly exists in a conformation with the 2-methyl group in a pseudoequatorial disposition. In the case of the trans and cis 2,3-dimethyl derivatives 1d and le besides the establishment of the configuration from the H-2,H-3 coupling constants, the downfield position of H-2 (4.45 ppm) and the upfield shift of the 2-methyl carbon (16.2 ppm) of the cis isomer **1e**, as compared to the corresponding signals found for the trans isomer 1d (4.01 and 19.4 ppm respectively), suggest that **le** exists in a conformation with a pseudoaxial disposition of the 2-methyl group. However, the downfield shift of the carbonyl carbon in the cis isomer, probably due to the loss of conjugaison with the double bond, suggests a slight distortion of the heterocyclic ring.

In contrast to $\mathbf{1f}$ or $\mathbf{1g}$ (6-t-butyl analogs), the compounds $\mathbf{1b}$, \mathbf{d} , \mathbf{e} can adopt the conformation \mathbf{C} or \mathbf{D} by the half-chair inversion of the cyclohexenyl ring. For the geometrical reason discussed above, we favor the \mathbf{C} conformation, however, our data do not allow to appreciate if a conformational equilibrium $\mathbf{C} \rightleftharpoons \mathbf{D}$ occurred in solution.

Scheme 3. Possible conformations of compounds 1b,d,e.

In summary, the dihydropyran ring prefers the conformation in which the 2-methyl group is pseudoequatorially disposed, with the exception of the cis-2,3-dimethyl derivative in which the 2-methyl group adopts a pseudoaxial position.

EXPERIMENTAL

Melting points were recorded on a Kofler hot plate. Boiling points

were uncorrected. Infrared and ultraviolet spectra were obtained with a Beckman Model Acculab 2 and DB spectrometers. The 'H-nmr spectra were taken on a 350 MHz Cameca spectrometer. The following conditions were used: sweep width 2800 Hz, pulse angle 13°, repetition time 2.3 seconds, digitization and data processing 16K, temperature 20°C. The '³C-nmr spectra were performed on a Varian XL-100 12FT spectrometer operating at 25.2 MHz with 'H noise decoupling at 100 MHz by FT technique using 45° pulse angle and a 1 second acquisition time, 5 kHz spectral width and 16 K FT. The samples were recorded in deuterio-chloroform (5% W/v) used as lock signal in spinning 10 mm tubes at 22°C. All spectra are expressed per million from TMS. Elemental analyses were performed by Microanalytical Laboratory, Centre National de la Recherche Scientifique 69390 Vernaison, France. Compounds 1a-e [1] and 1h [2] have been previously described.

cis- and trans 6-t-Butyl-2-methyl-5,6,7,8-tetrahydro-4-chromanones 1f and 1g.

These compounds were obtained as described for **la-e** [1] using 4-t-butyl-1-morpholino-1-cyclohexene and crotonoyl chloride. The material obtained after distillation bp 150-155° (4 mm Hg), yield 65% proved to be a mixture of cis and trans isomers **1f** and **1g** in a ratio of about 7:3 by 350 MHz ¹H-nmr; 350 MHz ¹H-nmr (deuteriochloroform): δ 0.92 (s, 9H), 1.40 and 1.41 (2d, 3H, J = 6.5 Hz, trans and cis respectively), 1.15-2.50 (m, 9H), 4.42 (m, 0.7 H, cis), 4.49 (m, 0.3 H, trans) ppm.

Anal. Calcd. for $C_{14}H_{22}O_2$: C, 75.63; H, 9.97. Found: C, 75.51; H, 10.08. The *cis/trans* isomeric mixture crystallized on standing, recrystallization of the solid material from hexane afforded the pure *cis* isomer 1g, yield 25%, mp 69°; ir (carbon tetrachloride): ν max 1680, 1630 cm⁻¹; uv (ethanol): 275 nm (ϵ 11800).

Attempts to isolate pure trans compound lg failed.

REFERENCES AND NOTES

- [1] R. Gelin, S. Gelin and R. Dolmazon, Bull. Soc. Chim. France, 1409 (1973).
 - [2] R. Dolmazon and S. Gelin, J. Org. Chem., 49, 4003 (1984).
 - [3] M. S. Chauhan and I. W. J. Still, Can. J. Chem., 53, 2880 (1975).
- [4] Y. Senda, A. Kasahara, T. Izumi and T. Takeda, Bull. Chem. Soc. Japan, 50, 2789 (1977).
 - [5] S. Danieshefsky and J. F. Kerwin, J. Org. Chem., 47, 1597 (1982).
- [6] E. L. Eliel, M. Monoharan, K. M. Pietrusiewicz and K. D. Hargrave, Org. Magn. Reson., 21, 94 (1983).
- [7] All the data will be reported in detail in a next paper with the collaboration of R. Faure and H. Loiseleur, Laboratoire de Chimie Analytique II, Université Claude Bernard, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex France.
- [8] K. Kabuto, Y. Kikuchi, S. Yamaguchi and N. Indue, Bull. Chem. Soc. Japan, 46, 1839 (1973).
- [9] J. W. Clark-Lewis, L. M. Jackman and T. M. Spotswood, Aust. J. Chem., 17, 632 (1964).
 - [10] R. Bucourt and D. Hainault, Bull. Soc. Chim. France, 1366 (1965).
- [11] Attempts to isolate a single crystal of 1h suitable for X-ray diffraction failed.